基于主动学习支持向量机的预应力锚索加固边坡可靠度分析
作者:
作者单位:

1.雅砻江流域水电开发有限公司,四川 成都 610051 ;2.同济大学地下建筑与工程系,上海 200092

作者简介:

段祥睿(1993—),男,工程师,博士。主要从事水电工程建设管理研究。E-mail:duanxiangrui@sdic.com.cn

通讯作者:

中图分类号:

TU443

基金项目:

国家自然科学基金项目(42402280)、国家资助博士后研究人员计划(GZB20240533)、上海市白玉兰人才计划浦江项目(23PJD104)资助


Reliability Analysis of Slopes Reinforced with Prestressed Anchor Cables Based on Active Learning Support Vector Machine
Author:
Affiliation:

1.Yalong River Hydropower Development Company, LTD., Chengdu 610051 , China ;2.Department of Geotechnical Engineering, Tongji University, Shanghai 210092 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    高坝大库水电站库岸边坡受复杂地质条件影响显著,传统预应力锚索加固设计通常忽略了土体强度参数的不确定性,且极限平衡法难以有效应对复杂地质环境,导致分析结果可靠性不足、计算效率低下。为解决上述问题,提出一种结合主动学习支持向量机(AL?SVM)与强度折减法的高效可靠度分析方法:支持向量机可高效近似边坡失稳判据,替代传统耗时的强度折减过程,实现快速可靠度评估;主动学习算法通过迭代主动筛选决策边界附近的关键样本点,极大降低了支持向量机训练所需的计算成本。以两河口水电站库岸边坡为实例验证,所提方法较传统蒙特卡罗方法计算效率提升约 98%,且具备高准确性,能够定量揭示加固参数变化对边坡失效概率的影响。该方法显著提升了复杂地质条件下预应力锚索边坡加固设计的可靠度分析效率与精度,创新性地解决了复杂工况下可靠度分析难题。

    Abstract:

    The reservoir bank slopes of high-dam and large-reservoir hydropower stations are significantly affected by complex geological conditions. Traditional prestressed anchor cable reinforcement designs often neglect the uncertainty of soil strength parameters, and the limit equilibrium method struggles to effectively address complex geological environments, resulting in insufficient reliability of the analysis results and low computational efficiency. To address the aforementioned issues, this study innovatively proposed an efficient reliability analysis method integrating active learning support vector machine (AL-SVM) with the strength reduction method. The support vector machine could efficiently approximate the instability criterion of the slope, replacing the traditionally time-consuming strength reduction process to achieve rapid reliability assessment. Additionally, the active learning algorithm iteratively and actively selected critical sample points near the decision boundary, substantially reducing the computational cost required for training the support vector machine. Taking the reservoir bank slope of the Lianghekou hydropower station as a case study, the proposed method showed an improvement in computational efficiency of approximately 98% compared to the traditional Monte Carlo method, while maintaining high accuracy and quantitatively revealing the influence of reinforcement parameter variations on slope failure probability. This method significantly improves the efficiency and accuracy of reliability analysis for the design of slopes reinforced with prestressed anchor cables under complex geological conditions, and provides an innovative solution to the challenges of reliability analysis under complex working conditions.

    参考文献
    相似文献
    引证文献
引用本文

段祥睿,刘存福,何丰前,谢小创,张洁,陆盟.基于主动学习支持向量机的预应力锚索加固边坡可靠度分析[J].防灾减灾工程学报,2025,45(5):1052-1061

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-06-12
  • 最后修改日期:2025-09-01
  • 录用日期:
  • 在线发布日期:2025-10-29
  • 出版日期: