基于DL‑ERT模型的地下水渗透系数预测方法研究
作者:
作者单位:

1.重庆交通大学河海学院,重庆 400074 ;2.重庆交通大学国家内河航道整治工程技术研究中心,重庆 400074 ;3.重庆交通大学水利水运工程教育部重点实验室,重庆 400074 ;4.重庆市综合交通运输研究所有限公司,重庆 401121

作者简介:

梁越(1985—),男,教授,博士。主要从事水利工程灾害形成机理及防治方面的研究。E-mail:liangyue2560@163.com

通讯作者:

中图分类号:

TU411

基金项目:

国家自然科学基金面上项目(52379097)、广西科技计划项目(桂科 AA23062023)、重庆市水利科技重点项目(CQSLK‐2024005)、重庆市研究生联合培养基地建设项目(JDLHPYJD2021004)、重庆交通大学研究生科研创新项目(2024S0049)资助


Research on Prediction Method for Groundwater Permeability Coefficient Based on DLERT Model
Author:
Affiliation:

1.The College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074 , China ;2.National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing 400074 , China ;3.Key Laboratory of Hydraulic and Waterway Engineering of Ministry of Education, Chongqing Jiao‐tong University, Chongqing 400074 , China ;4.Chongqing Comprehensive Transportation Research Institute Co.,Ltd., Chongqing 401121 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统方法刻画地下水含水层非均质性时面临的精度不足、预测成本高等问题,基于数值模拟和室内砂箱试验,通过残差网络优化集成卷积门控循环单元(CNN‐GRU)的强大数据学习能力和电阻率层析成像法(ERT)运用物理先验信息的优势,提出一种融合物理机理的深度学习算法—DL‐ERT 模型。将其对比多个传统反演模型, 探讨融合算法在地下水含水层的渗透系数刻画精度。结果表明:(1)模型的训练损失和验证损失都快速下降并趋近于零,且两者的收敛几乎同步,表明 DL‐ERT 模型的构建策略优秀,能快速有效的学习数据特征;(2)以某一测试集样本为例,对比 ERT、CNN‐GRU 和 DL‐ERT 对该样本的渗透系数反演云图,发现单一的算法模型均不能同时注重左右两侧的高渗区域刻画,而 DL‐ERT 则对高渗区域表现出极大的预测潜力,其拟合精度达到了 0.906;(3)制作室内砂箱试验,将融合算法与传统的克里金插值法、CNN‐GRU 以及 ERT 作对比运用,得到各模型的拟合精度值分别为 0.895、0.707、0.760 和 0.836。可以发现,DL‐ERT 确实在一定程度上弥补了单一算法的不足,相比于单一的 CNN‐GRU 和 ERT,其结果的预测精度提升了 7%~17%,表明了该模型在工程运用方面的潜力。

    Abstract:

    To address the issues of insufficient accuracy and high prediction costs faced by conventional methods in characterizing the heterogeneity of groundwater aquifers, this study proposed a physicsnformed deep learning algorithm—the DL-ERT model—based on numerical simulations and laboratory sandbox experiments. The model integrated the powerful data learning capability of a convolutional gated recurrent unit (CNN-GRU) optimized by residual networks with the advantage of physical prior information from electrical resistivity tomography (ERT). The DL-ERT model was compared with multiple traditional inversion models to examine the accuracy of the fusion algorithm in characterizing the permeability coefficient of groundwater aquifers. The results showed that: (1) the training and validation losses of the DL-ERT model rapidly decreased and approached zero, and their convergence was almost synchronous, indicating that the construction strategy of the DL-ERT model was excellent and that data features could be quickly and effectively learned. (2) Taking a sample from the test set as an example, the inversion cloud maps of the permeability coefficient obtained by ERT, CNNGRU, and DL-ERT were compared. It was found that individual algorithm models could not simultaneously capture the high-permeability zones on both sides, while DL-ERT demonstrated remarkable predictive potential for high-permeability zones, achieving a fitting accuracy of 0.906. (3) Laboratory sandbox experiments were conducted, and the fusion algorithm was compared with traditional Kriging interpolation, CNN-GRU, and ERT, yielding fitting accuracies of 0.895, 0.707, 0.760, and 0.836, respectively. It is evident that the DL-ERT model compensates for the limitations of individual algorithms to some extent, with prediction accuracy improved by 7%-17% compared with the individual CNN-GRU and ERT models, indicating the potential of the model for engineering applications.

    参考文献
    相似文献
    引证文献
引用本文

梁越,舒云林,刘港庆,许彬,赵硕,杨晓霞.基于DL‑ERT模型的地下水渗透系数预测方法研究[J].防灾减灾工程学报,2025,45(5):1032-1041

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-04-17
  • 最后修改日期:2025-06-14
  • 录用日期:
  • 在线发布日期:2025-10-29
  • 出版日期: