响应面参数筛选与智能算法优化的有限元模型更新
作者:
作者单位:

1.中国地震局工程力学研究所地震工程与工程振动重点实验室,黑龙江 哈尔滨, 150080 ;2.地震灾害防治应急管理部重点实验室,黑龙江 哈尔滨 150080 ;3.三峡大学土木与建筑学院,湖北 宜昌 443002

作者简介:

吴道奇(1997—),男,硕士研究生。主要从事结构抗震方面的研究。E-mail:1258743279@qq.com

通讯作者:

中图分类号:

TU443

基金项目:

中国地震局工程力学研究所基本科研业务费专项项目(2023B07)、黑龙江省自然科学基金杰出青年基金(JQ2022E006)资助


Finite Element Model Updating via Response Surface Parameter Screening and Intelligent Algorithm Optimization
Author:
Affiliation:

1.Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, ChinaEarthquake Administration, Harbin 150080 , China ;2.Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin 150080 , China ;3.College of Civil Engineering & Architecture, China Three Gorges University, Yichang 443002 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    在当前工程和科学研究中,由于大规模结构优化问题中的有限元模型受到高计算成本和复杂性的限制,引入响应面模型成为克服这一挑战的有效途径,研究人员可在保持相对准确性的同时显著降低计算成本,为结构设计和优化提供更为可行和经济的解决方案。然而,面对复杂模型拟合响应面时,考虑到个体差异和高成本的灵敏度分析,传统参数筛选导致了模型更新的准确性和效率下降。为解决参数筛选问题,本研究以一栋 26 层框架剪力墙结构有限元模型为对象,在构建响应面时引入了单因素试验和爬坡试验两个预处理步骤。这两步骤的目的是缩小搜索空间、筛选关键因素,并提供梯度信息,从而使得响应面的构建更为准确和可操作,为后续模型处理提供可靠基础。通过结合多种智能算法,本研究完成了对响应面的模型更新和优化操作。研究结果表明,经过预处理步骤筛选之后的参数构建的响应面,在多重类型算法应用时能与识别结果保持较低的误差率。这项研究为未来工程实践和相关领域的研究提供了有益的指导,为大规模结构优化问题中提高有限元模型更新的准确性和效率提供了更为灵活和通用的优化解决方案。

    Abstract:

    In the current engineering and scientific research, finite element models for large-scale structural optimization face limitations due to high computational costs and complexity. The integration of response surface models has emerged as an effective approach to overcome these challenges, enabling researchers to significantly reduce computational costs while maintaining acceptable accuracy. Howev-er, when fitting response surfaces for complex models, conventional parameter screening methods often lead to reduced accuracy and efficiency, particularly when considering individual variations and the high costs of sensitivity analysis. Focusing on the finite element model of a 26-story frame-shear wall structure, this study integrated two preprocessing steps—single-factor experiments and hill-climbing tests—during response surface construction. These steps aimed to narrow the search space, screen key factors, and provide gradient information,making the construction of the response surface more accurate and operable, and providing a reliable foundation for subsequent model processing. By integrating multiple intelligent algorithms, this study completed the model updating and optimization operations for the response surface. The research results showed that the response surface constructed using parameters screened through preprocessing steps maintained consistently low error rates with identification results when multiple algorithm types were applied. This study provides valuable guidance for future engineering practices and research on related fields, offering a more flexible and universal optimization solution for enhancing the accuracy and efficiency of finite element model updating in largescale structural optimization.

    参考文献
    相似文献
    引证文献
引用本文

吴道奇,杜轲,骆欢,马加路,聂桂波.响应面参数筛选与智能算法优化的有限元模型更新[J].防灾减灾工程学报,2025,45(2):295-306

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-20
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:2025-05-09
  • 出版日期: