基于CO浓度分布的桥梁电缆通道着火点位置辨识
作者:
作者单位:

东南大学机械工程学院,江苏 南京 211189

作者简介:

董林杰(1994—),男,博士研究生。主要从事机器人和电力设备防灾减灾研究。E-mail:230228047@seu.edu.cn

通讯作者:

中图分类号:

TM7;S776.29+2

基金项目:

国家重点研发计划项目(2021YFF0500900)资助


Identification of Ignition Point in Bridge Cable Ducts Based on CO Concentration Distribution
Author:
Affiliation:

School of Mechanical Engineering, Southeast University, Nanjing 211189 , China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    桥梁高压电缆通道火灾具有蔓延迅速且扑灭困难的特点,极易造成巨大的经济损失并对巡检人员的安全造成威胁,早期发现火灾位置对救援工作至关重要,因此研究桥梁箱梁高压电缆通道火灾初期的着火点位置智能辨识和预测问题具有重要意义。通过PyroSim分析软件建立了桥梁箱梁电缆通道火灾初期烟气蔓延的仿真模型,得到了CO气体扩散规律;设计并训练了用于数据分层和各层着火点位置辨识的人工神经网络(ANN)模型,基于仿真数据进行了着火点位置辨识实验;设计了着火点辨识系统并在模拟电缆通道中进行了现场测试。研究结果表明:(1)在基于仿真数据的着火点位置辨识实验中,本研究建立的着火点位置辨识ANN模型,在50 m电缆通道中针对单层电缆阴燃位置辨识的最大误差为0.98 m,最小误差为-0.32 m;针对三层电缆阴燃位置辨识的最大误差为 1.53 m,最小误差为-1.26 m。(2)在着火点辨识系统现场测试实验中,着火点辨识的最大误差为0.68 m,最小误差为-0.27 m,该精度能够满足桥梁箱梁高压电缆通道火灾初期的着火点位置智能辨识和预测的需求。研究结果有望在实际应用中提高桥梁箱梁电缆通道火灾预警的准确性和及时性。

    Abstract:

    Fires in high-voltage cable ducts on bridges are characterized by rapid spread and difficulty in extinguishing, which can lead to significant economic losses and pose threats to the safety of inspection personnel. Early identification of the fire's location is crucial for effective rescue operations. Therefore, researching the intelligent identification and prediction of ignition points in the early stages of fires in bridge cable ducts is of great importance. A simulation model for the early spread of smoke in bridge box girder cable ducts was established using PyroSim analysis software, yielding the CO diffusion characteristics. An artificial neural network (ANN) model was designed and trained for data stratification and ignition point identification at each layer. Experiments on ignition point identification were conducted based on simulation data, and an ignition point identification system was designed and test-ed on-site in a simulated cable duct. The results showed that: (1) In the ignition point identification experiments based on simulation data, the ANN model exhibited a maximum error of 0.98 meters and a minimum error of -0.32 meters for identifying the ignition point in a 50-meter, single-layer cable duct. For the smoldering ignition point in a three-layer cable duct, the maximum error was 1.53 meters and the minimum error was -1.26 meters. (2) In the on-site testing of the ignition point identification system, the maximum error was 0.68 meters, and the minimum error was -0.27 meters. This level of precision meets the requirements for intelligent identification and prediction of ignition points in the early stages of fires in bridge box girder high-voltage cable ducts. The findings hold potential for improving the accuracy and timeliness of fire alarm systems in practical applications for bridge box girder cable ducts.

    参考文献
    相似文献
    引证文献
引用本文

董林杰,张任飞,王军飛,王兴松,田梦倩.基于CO浓度分布的桥梁电缆通道着火点位置辨识[J].防灾减灾工程学报,2025,(1):119-127

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-04-11
  • 最后修改日期:2024-05-23
  • 录用日期:
  • 在线发布日期:2025-03-10
  • 出版日期: