摘要
近年来,滑坡、崩塌、泥石流等地质灾害频发,其危害性大,波及范围广,严重威胁人民群众生命及财产安全,制约经济社会发展和人民对美好生活需求的向往。经过多年技术攻关和群防群测工作积累,我国在地质灾害风险调查和隐患排查方面取得了明显成效,综合运用合成孔径雷达测量、高分辨率卫星遥感、无人机遥感、机载激光雷达测量等多种新技术手段以提高全国地质灾害调查评价精度的工作也在持续开展中。在新时代计算机技术的不断革新与发展下,基于大数据技术的地质灾害监测预警为地质灾害防治提供了新的思维范式和经验指导。为了促进对该领域发展新导向的深入了解,介绍了大数据方法在地质灾害数据获取、存储、分析的几种关键技术,综述了迄今国内外学者利用大数据技术开展地质灾害研究和防治方面的工作。
地质灾害指在地球内部、外部以及人类活动的作用下,地质动力运动或地质环境异常变化引起的自然灾

图1 2018年、2019年我国地质灾害构成情况
Fig.1 Summary of the geological hazards in years 2018 and 2019 in China
在2018年10月召开的中央财经委员会第三次会议上,习近平总书记提出:加强自然灾害防治关系国计民生,要建立高效科学的自然灾害防治体系,提高全社会自然灾害防治能力,为保护人民群众生命财产安全和国家安全提供有力保障。为积极响应在实现“两个一百年”奋斗目标的战略高度下的地质灾害防治新技术需求,我国依靠“科技创新”,通过遥感、测绘、地质、人工智能、云计算等的跨界合作,多学科交叉融合,以及国内现有优势资源的整合,丰富了监测方法,提供了数据分析手段,帮助建立灾害早期预警预报系统,为灾害风险评估以及灾后响应措施提供指导。本文通过web of science、知网等文献搜索引擎,以“大数据在地质工程方面的应用”为主题检索已发表文章并进行统计,统计区间为2000~2020年8月。据结果显示,近20年间,国内外已发表文章总数达到了1 112篇,由

图2 近20年大数据在地质工程方面的应用相关中英文文章数
Fig.2 Number of articles published worldwide in the past 20 years
从20世纪六七十年代大型机的初兴到微型机的出现,直至如今多种智能设备的更迭,数据信息的容量和处理速度需求不断增长,现代化的信息技术产业已经有近70年的历史。大数据主要发展历程如

图3 大数据发展历程
Fig.3 The development process of big data
在不断发展下,大数据应用已经逐渐覆盖整个社会生活,包括医
现阶段,对于大数据而言,并没有一个明确的定义,它通常指大量复杂的结构化、半结构化或者非结构化数据,以及多源数据的融合,IBM提出的5V特征,可以将其概括:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)、Veracity(真实)。大数据关键技术涉及到数据获取、数据储存、数据分析以及数据应用等方面,针对地质大数据海量、复杂、多源的特点,传统的数据处理技术显得无能为力,大数据处理的各个环节,都体现出特有的新兴技术特点(

图4 地质灾害中大数据关键技术
Fig.4 Key techniques of big data in geological disaster analysis and prevention
在数据获取方面,手段更加丰富,同时精度也得到了大幅度提高。通过合成孔径雷达测量、高分卫星遥感、无人机航测、机载激光雷达测量等多种新技术手段的综合运用,进一步提高全国地质灾害预防水平,建立空⁃天⁃地一体化多源观测体系,实现针对地质灾害的不同层次、不同时间以及空间,使用不同手段进行综合多方位观测。
“空”主要指基于卫星获得数据资料,卫星图像遥感技术通过采集地球图像变化检测来进行灾后受损评
“天”主要指借助飞行器获得的数据资料,无人机在态势感知方面具有很高的效率,通过捕捉航空图像获取信息,与卫星图像相比,其处理速度更快,并且可以获得高空间分辨率图
“地”主要指地面建立由激光雷达、无线传感网络及物联网等组成的地基节点网或是通过其他地质勘察方法获得的地面监测信息。激光雷达设备昂贵、数据采集耗时,但具有高精度、高分辨率等优点,可用于生成易受灾区域建模和风险分析的详细地形图和数字高程模
除去常规意义上的数据来源,众包平台、社交媒体网络同样可以从用户和大众群体处获取数据,鉴于其数据容量大,噪声大,流媒体速度快,需要使用多种工具以及自动化流程进行处
计算机及信息技术的不断发展,使地质大数据能够搜集勘察、监测、检测等方面的数据资料,面对范围广、来源多、数量大、类型复杂的数据信息,传统的标准处理和储存技术已不可行,且单机系统的性能已无法满足这样海量的数据,提升硬件配置也难以追上数据的增长速度。为了高效存储、读取以及管理数据信息,新的数据管理系统应运而生。
作为无共享体系结构的数据库系统,并行数据库有高结构化以及强大的存储功能,可以有效保障数据的安全性、可靠性以及逻辑
NoSQL,即“Not only SQL”,是非关系型数据库的泛指,能够满足海量数据的存储与访问需求,数据库系统操作可实现高并发读写,有高拓展性以及高可用
NewSQL作为新一代的数据库系统,在拥有与NoSQL数据库相同的高扩展性以及可用性的前提下,支持SQL查询语言,同时能够提供事务的ACID保
在发展新时期,数据处理分析能力得到了显著提升。通过虚拟化技术,计算机能够高效、安全完成数据信息的整合处理工作。本文简单介绍几种常用数据处理以及分析手法。
在20世纪90年代,网络技术高速发展,数据库系统从简单的数据管理不断发展到能够存储海量信息提供丰富的多样数据。为更好地发掘出大数据的“Value”,数据挖掘的技术被提出。最初,学者们提出KDD(knowledge discover in database)的概念,而数据挖掘作为知识发现的子过程,被逐渐接受。其主要功能为基于数据信息进行未来趋势的预测和科学决策,发现数据库中隐含的知识。在不断发展中,当前数据挖掘理论基础逐渐成形,主要技术包括数据关联技术、分类、回归以及聚类技术
机器学习多作为一种应用统计的工具,通过推理以及模式识别来构建计算模型。许多数学及统计的方法概念被运用到机器学习中,包括贝叶斯准则、最小二乘法、马尔可夫模型以及高斯过
批处理一般用来处理大量数据,通常用于在特定时间间隔内分组在一起的数据集合,逐个进行顺序处理。批处理框架需要一组长期收集的数据,并需要将批处理所需的所有数据加载到对应类型的数据库以及存储、文件系统中,然后进行处
斜坡位置的岩石或土体因地下水的活动、降雨、地震等因素的影响,在重力作用下土质发生松动致使整体或分散滑动即为滑坡。在滑坡危险区进行长期监测,建立早期预警系统,预测滑坡发生可能可以有效减少滑坡灾
目前,遥感大数据是滑坡灾害分析应用最广泛的技
物联网能够互联连续全球范围内的数据信息以及设备,实现物理空间的虚拟视图交
近年来,人工智能不断发展,机器学习在滑坡易发性分析以及预测预报方面应用广泛。机器学习技术用于滑坡易发性的分析,能够帮助确定滑坡脆弱

图5 思南县地灾分布及滑坡易发性分
Fig.5 Geological disaster distribution map of Sinan County and landslide susceptibility ma

图6 运用机器学习方法建立滑坡易发性模型
Fig.6 Landslide susceptibility model built through machine learning methods
在沟谷沟壑地区,因强降雨、降雪以及其他自然灾害,冲刷石块和沙土等颗粒物形成携带有大量泥沙以及石块的特殊洪流即为泥石流。针对此类地质灾害,监测区域地质、降雨数据信息,对泥石流进行有效控制预测、易发性评估是大数据防治主要手段。
遥感技术对泥石流的周围环境进行监测,能够有效预测泥石流活动。2010年8月8日舟曲发生特大泥石流,利用无人机、航空遥感图像确定泥石流受灾区域,为灾后救援工作提供了技术支
利用物联网技术进行泥石流灾害监测可获取大量数据,建立预警系统可有效预防灾害发
为防止泥石流灾害的发生,易发性分析以及风险评估预警是较为常用的方

图7 4种模型的泥石流易发性GIS制
Fig.7 GIS maps of debris flow susceptibility of four model
崩塌指在较陡峻斜坡上的岩土体受到重力作用的影响,突然脱离母体崩落、滚动、堆积在坡脚的地质现象。其突发性强、分布范围广、致灾能力强,大数据在此类地质灾害防治研究主要集中在监测和建立预警系统方面。
对于悬崖处或是险峻地势处的岩石,其调查较难展开,遥感技术的发展为这些人迹罕至之地提供了监测手段。在险要地形将卫星图像信息与地面遥感数据进行结合,建立监测系统,可以实现对岩石崩塌的可能性评
物联网和机器学习技术,可对陡坡上的岩体进行实时监测、崩塌预测。C.Alippi

图8 研究区地理位置及北京西南地区公路崩塌灾害易发性
Fig.8 Location map of the study area and the hazard susceptibility map of highway collapse in southwestern Beijin
在自然或人为因素的影响下,地面变形主要有三种类型:地面塌陷、地裂缝、地面沉
在对地表变形进行监测中,多种遥感技术以及物联网的集成传感器实现了实时共享数据。Z.H.An
数据挖掘、机器学习算法对地面变形数据的处理分析,可以全面、准确地预测地表的位移情况。C.P.Schwegmann
频发的地质灾害严重制约经济和社会发展,当务之急是建立更高效科学的地质灾害体系。在信息时代数字化、网络化和智能化的发展下,地质大数据时代的到来是必然趋势,依靠科技创新提高地灾的防治能力是新时代的需求。本文主要介绍了数据采集、数据储存、数据仓库、数据处理方面的大数据关键技术,并对国内外学者在滑坡、泥石流、崩塌、地面塌陷、地裂缝以及地面沉降地质灾害的大数据技术相关应用进行了总结。利用先进的遥感、雷达技术,物联网监测系统以及人工智能、机器学习算法,在研究原理、发现隐患、监测隐患、发布预警防灾工作上,大数据相关技术帮助建立“群测群防”、“专群结合”监测预警体系。
然而,大数据技术在地灾防治应用中还存在以下无法忽视的问题:
(1)在地质数据的获取过程中,数据信息成本昂贵,工程实用性不高。
(2)在岩土工程领域,监测数据量较少,中等或小规模数据会更难以分析。
(3)面对复杂的地质情况,数据获取较为困难,进行数据分析时无法保证其验证准确性。
(4)多源数据的异构性、数据异常值和缺失值的存在影响数据挖掘、分析过程,易导致结果偏离,得出错误结论。
(5)就当前而言,还无法实现精准的全自动化的流程。此外,地灾远程智能预警方法及“设备-平台-会商”协同预警机制亟需建立。
总体来说,大数据技术地质灾害应用正处于发展的上升阶段,学者们在不断摸索前进的过程中还需要克服种种困难。
参考文献
殷跃平.中国地质灾害减灾回顾与展望——从国际减灾十年到国际减灾战略[J].国土资源科技管理,2001,18(3):26-29. [百度学术]
Yin Y P. A review and vision of geological hazards in China [J]. Scientific and Technological Management of Land and Resources, 2001,18(3) :26-29. [百度学术]
Ghemawat S, Gobioff H, Leung S T. The Google file system[J].Acm Sigops Operating Systems Review, 2003:37:29-43 [百度学术]
Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters[J]. Communications of the ACM, 2008, 51(1):107-113. [百度学术]
Chang F, Dean J, Ghemawat S, et al. Bigtable: A distributed storage system for structured data[J]. Acm Transactions on Computer Systems, 2008, 26(2):1-26. [百度学术]
Andreu-Perez J, Poon C C Y, Merrifield R D, et al. Big data for health[J]. IEEE Journal of Biomedical and Health Informatics, 2015, 19(4):1193-1208. [百度学术]
Lv Y S, Duan Y J, Kang W W, et al. Traffic flow prediction with big data: a deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2):865-873. [百度学术]
Chen C L P, Zhang C Y. Data-intensive applications, challenges, techniques and technologies: A survey on big data[J]. Information Sciences, 2014, 275: 314-347. [百度学术]
Lei Y, Jia F, Lin J, et al. An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):3137-3147. [百度学术]
Kim G H, Trimi S, Chung J H. Big-data applications in the government sector[J]. Communications of the ACM, 2014, 57(3): 78-85. [百度学术]
Fotovatikhah F, Herrera M, Shamshirband S, et al. Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work[J]. Engineering Applications of Computational Fluid Mechanics, 2018, 12(1): 411-437. [百度学术]
Pradhan B, Tehrany M S, Jebur M N. A new semiautomated detection mapping of flood extent from TerraSAR-X satellite image using rule-based classification and taguchi optimization techniques[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 4331-4342. [百度学术]
Raspini F, Bardi F, Bianchini S, et al. The contribution of satellite SAR-derived displacement measurements in landslide risk management practices[J]. Natural Hazards, 2017, 86(1): 327-351. [百度学术]
Liou Y A, Kar S K, Chang L Y. Use of high-resolution FORMOSAT-2 satellite images for post-earthquake disaster assessment: a study following the 12 May 2008 Wenchuan Earthquake[J]. International Journal of Remote Sensing, 2010, 31(13): 3355-3368. [百度学术]
唐川, 张军, 万石云, 等. 基于高分辨率遥感影象的城市泥石流灾害损失评估[J]. 地理科学, 2006, 26(3):358-363. [百度学术]
Tang Ch, Zhang J, Wan Sh Y, et al. Loss evaluation of urban debris flow hazard using high spatial resolution satellite imagery[J]. Scientia Geographica Sinica, 2006, 26(3):358-363. (in Chinese) [百度学术]
Ofli F, Meier P, Imran M, et al. Combining human computing and machine learning to make sense of big (aerial) data for disaster response[J]. Big Data, 2016, 4(1): 47-59. [百度学术]
Foresti G L, Farinosi M, Vernier M. Situational awareness in smart environments: socio-mobile and sensor data fusion for emergency response to disasters[J]. Journal of Ambient Intelligence & Humanized Computing, 2015, 6(2):239-257. [百度学术]
Kakooei M, Baleghi Y. Fusion of satellite, aircraft, and UAV data for automatic disaster damage assessment[J]. International Journal of Remote Sensing, 2017, 38(8-10):2511-2534. [百度学术]
Moya L, Yamazaki F, Liu W, et al. Detection of collapsed buildings due to the 2016 Kumamoto, Japan, earthquake from Lidar data[J]. Natural Hazards and Earth System Sciences Discussions, 2017, 18: 65-78. [百度学术]
Chen D, Liu Z X, Wang L Z, et al. Natural disaster monitoring with wireless sensor networks: a case study of data-intensive applications upon low-cost scalable systems[J]. Mobile Networks and Applications, 2013, 18(5):651-663. [百度学术]
Büscher M, Liegl M, Thomas V. Collective Intelligence in Crises[M]. Switzerland: Springer,2014: 243-265. [百度学术]
陈志勇.智能电网的大数据处理技术应用[J].集成电路应用,2020,37(2):78-79. [百度学术]
Chen Zh Y. Application of big data processing technology in smart grid[J]. Application of IC, 2020, 37(2):78-79. (in Chinese) [百度学术]
Konopko J. Distributed and parallel approach for handle and perform huge datasets[C]∥ International Conference of Computational Methods in Sciences and Engineering 2015 (ICCMSE 2015). Melville, NY: AIP Publishing LLC, 2015. [百度学术]
孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169. [百度学术]
Meng X F, Ci X. Big data management:concepts, techniques and challenges[J]. Journal of Computer Research and Development, 2013,50(1):146-169. (in Chinese) [百度学术]
覃雄派,王会举,李芙蓉,等.数据管理技术的新格局[J].软件学报,2013,24(2):175-197. [百度学术]
Qin X P, Wang H J, Li F R, et al. New landscape of data management technologies[J]. Journal of Software, 2013,24(2):175-197. (in Chinese) [百度学术]
李绍俊,杨海军,黄耀欢,等.基于NoSQL数据库的空间大数据分布式存储策略[J].武汉大学学报(信息科学版),2017,42(2):163-169. [百度学术]
Li Sh J, Yang H J, Huang Y H, et al. Geo-spatial big data storage based on NoSQL database[J]. Geomatics and Information Science of Wuhan University, 2017,42(2):163-169. (in Chinese) [百度学术]
Pavlo A, Aslett M. What's really new with NewSQL?[J]. Sigmod Record: ACM SIGMOD (Management of Data), 2016, 45(2):45-55. [百度学术]
徐述,汪彦,曾海洋,等.大数据应用下的新型分布式数据库NewSQL[J].数字技术与应用,2018,36(8):51-52. [百度学术]
Xu Sh, Wang Y, Zeng H Y, et al. New distributed database NewSQL based on big data application[J]. Digital Technology &Application, 2018,36(8):51-52. (in Chinese) [百度学术]
郭雷风. 面向农业领域的大数据关键技术研究[D].北京:中国农业科学院,2016. [百度学术]
Guo L F. Study on the key technologies of big data for agriculture[D]. Beijing:Chinese Academy of Agricultural Sciences, 2016. (in Chinese) [百度学术]
王光宏,蒋平.数据挖掘综述[J].同济大学学报(自然科学版), 2004,32(2):246-252. [百度学术]
Wang G H, Jang P. Survey of data mining[J]. Journal of Tongji University Natural (Science), 2004,32(2):246-252. (in Chinese) [百度学术]
Dramsch J S. 70 years of machine learning in geoscience in review[J].Advances in Geophysics, 2020, 61: 1-55. [百度学术]
Krizhevsky A, Sutskever I, Hinton G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems,2012,25(2): 1097-1105. [百度学术]
Cumbane S P, Gidófalvi G. Review of big data and processing frameworks for disaster response applications[J]. International Journal of Geo-Information, 2019, 8(9):387. [百度学术]
Dittrich J, Quiané-RuizJorge-Arnulfo. Efficient big data processing in Hadoop MapReduce[J]. Proceedings of the VLDB Endowment, 2012, 5(12):2014-2015. [百度学术]
Abadi D J, Ahmad Y, Balazinska M, et al. The design of the borealis stream processing engine[J]. CIDR, 2005, 5: 277-289. [百度学术]
Akidau T, Balikov A, Bekiroğlu K, et al. Millwheel: fault-tolerant stream processing at internet scale[J]. Proceedings of the Vldb Endowment, 2013, 6(11):1033-1044. [百度学术]
Ananthanarayanan R, Basker V, Das S, et al. Photon: Fault-tolerant and scalable joining of continuous data streams[C]∥ Acm Sigmod International Conference on Management of Data. New York: ACM, 2013. [百度学术]
Gurusamy V, Kannan S, Nandhini K. The real time big data processing framework: Advantages and limitations[J]. International Journal of Computer Sciences and Engineering, 2017, 5(12): 305-312. [百度学术]
Suryawanshi S R, Deshpande U L. Review of risk management for landslide forecasting, monitoring and prediction using wireless sensors network[C]∥ 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). New York: IEEE, 2017. [百度学术]
Atzeni C, Barla M, Pieraccini M, et al. Early warning monitoring of natural and engineered slopes with ground-based synthetic-aperture radar[J]. Rock Mechanics and Rock Engineering, 2015, 48(1):235-246. [百度学术]
Intrieri E, Gigli G, Mugnai F, et al. Design and implementation of a landslide early warning system[J]. Engineering Geology, 2012, 147: 124-136. [百度学术]
Dong J, Zhang L, Tang M G, et al. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China[J]. Remote Sensing of Environment, 2018, 205:180-198. [百度学术]
Barla M, Antolini F. An integrated methodology for landslides' early warning systems[J]. Landslides, 2016, 13(2):215-228. [百度学术]
Lazarescu M T. Design of a WSN platform for long-term environmental monitoring for IoT applications[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2013, 3(1): 45-54. [百度学术]
Li J, Li C K, Li K, et al. Design of landslide monitoring and early warning system based on internet of things[J]. Applied Mechanics & Materials, 2014, 511-512:197-201. [百度学术]
Aggarwal S, Mishra P K, Sumakar K V S, et al. Landslide monitoring system implementing IOT using video camera[C]∥ 3rd International Conference for Convergence in Technology (I2CT). New York: IEEE, 2018. [百度学术]
Kansal A, Singh Y, Kumar N, et al. Detection of forest fires using machine learning technique: A perspective[C]∥ International Conference on Image Information Processing. New York: IEEE, 2015. [百度学术]
Karunarathne S M, Dray M, Popov L, et al. A technological framework for data-driven IoT systems: Application on landslide monitoring[J]. Computer Communications, 2020, 154:298-312. [百度学术]
Zhu L, Huang L H, Fan L Y, et al. Landslide susceptibility prediction modeling based on remote sensing and a novel deep learning algorithm of a cascade-parallel recurrent neural network[J]. Sensors (Basel, Switzerland), 2020, 20(6):1576. [百度学术]
Kang K H, Park H J. Study on the effect of training data sampling strategy on the accuracy of the landslide susceptibility analysis using random forest method[J]. Economic and Environmental Geology, 2019, 52(2): 199-212. [百度学术]
Albano R, Sole A. Geospatial methods and tools for natural risk management and communications[J]. Isprs International Journal of Geo Information, 2018, 7(12):470. [百度学术]
Yousefi S, Pourghasemi H R, Emami S N, et al. A machine learning framework for multi-hazards modeling and mapping in a mountainous area[J]. Entific Reports, 2020, 10(1):1-14. [百度学术]
胡涛,樊鑫,王硕,等.基于逻辑回归模型和3S技术的思南县滑坡易发性评价[J].地质科技通报,2020,39(2):113-121. [百度学术]
Hu T, Fan X, Wang Sh,et al. Landslide susceptibility evaluation of Sinan County using logistics regression model and 3S technology[J]. Bulletin of Geological Science and Technology, 2020,39(2):113-121. (in Chinese) [百度学术]
Zhang W G, Ching J Y, Goh A T C, et al. Big data and machine learning in geoscience and geoengineering: Introduction[J]. Geoscience Frontiers, 2021, 12(1):327-329. [百度学术]
Shafizadeh-Moghadam H, Minaei M, Shahabi H, et al. Big data in Geohazard: Pattern mining and large scale analysis of landslides in Iran[J]. Earth Science Informatics, 2019,12(1):1-17. [百度学术]
Lee C Y, Huang J Q, Ma W P, et al. Analyze the rainfall of landslide on Apache Spark[C]∥ Proceedings of 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI). New York: IEEE, 2018:348-351. [百度学术]
Zhao J B, Liu Y X, Hu M. Optimisation algorithm for decision trees and the prediction of horizon displacement of landslides monitoring[J]. The Journal of Engineering, 2018, 2018(16): 1698-1703. [百度学术]
赵久彬,刘元雪,刘娜,等.海量监测数据下分布式BP神经网络区域滑坡空间预测方法[J].岩土力学,2019,40(7):2866-2872. [百度学术]
Zhao J B, Liu Y X, Liu N, et al. Spatial prediction method of regional landslide based on distributed bp neural network algorithm under massive monitoring data[J]. Rock and Soil Mechanics, 2019,40(7):2866-2872. (in Chinese) [百度学术]
Youssef A M, Pourghasemi H R. Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia[J]. Geoscience Frontiers, 2021,12(2): 639-655. [百度学术]
Ngo P T T, Panahi M, Khosravi K, et al. Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran[J]. Geoscience Frontiers, 2021,12(2): 505-519. [百度学术]
Xue D J, He Z W, Wang Z H. Zhouqu County 8.8 extra-large-scale debris flow characters of remote sensing image analysis[C]∥ 2011 International Conference on Electronics, Communications and Control (ICECC). New York: IEEE, 2011: 597-600. [百度学术]
Wen Q, He H X, Wang X F, et al. UAV remote sensing hazard assessment in Zhouqu debris flow disaster[C]∥ Remote Sensing of the Ocean, Sea Ice, Coastal Waters, & Large Water Regions. Bellingham, WA: Spie-Int Soc Optical Engineering, 2011. [百度学术]
Lu H M, Nakashima S, Li Y J, et al. A fast debris flow disasters areas detection method of earthquake images in remote sensing system[J]. Disaster Advances, 2012, 5(4):796-799. [百度学术]
Yu H, Gan S, Yuan X P, et al. Remote sensing monitoring of debris flow area in Dabaini River Basin of Xiaojiang, Dongchuan County[C]∥ 2018 7th International Conference on Agro-geoinformatics (Agro-geoinformatics). New York: IEEE, 2018: 1-6. [百度学术]
Yin J Z, He F Q, Luo Z B. Researching the relationships between the environmental change of vegetation and the activity of debris flows based on remote sensing and GIS[J]. Procedia Environmental Sciences, 2011,11:918-924. [百度学术]
Lee X Y, Lee K C. Risk assessment on debris flow hazard along linear construction civil engineering based on satellite remote sensing and fuzzy comprehensive evaluation method[C]∥International Conference on Chemical, Material and Food Engineering. Paris, France: Atlantis Press, 2015. [百度学术]
Zhang X H, Gan S, Yuan X P, et al. Comprehensive analysis of characteristics of debris flow fans in xiaojiang valley by using remote sensing method[C]∥2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). New York: IEEE, 2019. [百度学术]
Shah S H, Yaqoob I. A survey: Internet of things (IOT) technologies, applications and challenges[C]∥ 2016 IEEE Smart Energy Grid Engineering (SEGE). New York:IEEE. DOI:10.1109/SEGE,20167589556:381-385. [百度学术]
Huang J, Huang R Q, Ju N P, et al. 3D WebGIS-based platform for debris flow early warning: A case study[J]. Engineering Geology, 2015, 197:57-66. [百度学术]
Ma H. Design and application on Bluetooth-based wireless sensor network debris flow mountain health monitoring system[C]∥ Advanced Materials Research. Stafa-Zurich, Switzerland: Trans Tech Publications Ltd, 2014: 829-832. [百度学术]
Ko H Y, Fang Y M, Chang Y H. Using mobile sensors for in-situ monitoring of debris flows in Taiwan[C]∥ 2009 17th International Conference on Geoinformatics. New York: IEEE, 2009: 1-4. [百度学术]
Ye J X, Kurashima Y, Kobayashi T, et al. An efficient in-situ debris flow monitoring system over a wireless accelerometer network[J]. Remote Sensing, 2019, 11(13):1512. [百度学术]
Lee H C, Banerjee A, Fang Y M, et al. Design of a multifunctional wireless sensor for in-situ monitoring of debris flows[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(11):2958-2967. [百度学术]
Chiou I J, Chen C H, Liu W L, et al. Methodology of disaster risk assessment for debris flows in a river basin[J]. Stochastic Environmental Research and Risk Assessment, 2015, 29(3): 775-792. [百度学术]
Xu W B, Jing S C, Yu W J, et al. A comparison between Bayes discriminant analysis and logistic regression for prediction of debris flow in Southwest Sichuan, China[J]. Geomorphology, 2013, 201: 45-51. [百度学术]
张永宏,葛涛涛,田伟,等.基于地质大数据的泥石流灾害易发性评价[J].计算机应用,2018,38(11):3319-3325. [百度学术]
Zhang Y H, Ge T T, Tian W, et al. Evaluation of susceptibility to debris flow hazards based on geological big data[J]. Journal of Computer Applications, 2018,38(11):3319-3325. (in Chinese) [百度学术]
Zhao Y, Meng X M, Qi T J, et al. AI-based identification of low-frequency debris flow catchments in the Bailong River basin, China[J]. Geomorphology,Doi:10.1016/J.geomorph.2020.107125. [百度学术]
Liang Z, Wang C M, Zhang Z M. A comparison of statistical and machine learning methods for debris flow susceptibility mapping[J]. Stochastic Environmental Research and Risk Assessment, 2020,34(11): 1887-1907. [百度学术]
张书豪,吴光.随机森林与GIS的泥石流易发性及可靠性[J].地球科学,2019,44(9):3115-3134. [百度学术]
Zhang Sh H, Wu G. Debris flow susceptibility and its reliability based on random forest and GIS[J]. Earth Science, 2019,44(9):3115-3134. (in Chinese) [百度学术]
Frodella W, Ciampalini A, Gigli G, et al. Synergic use of satellite and ground based remote sensing methods for monitoring the San Leo rock cliff (Northern Italy)[J]. Geomorphology, 2016, 264: 80-94. [百度学术]
Frodella W, Lombardi L, Nocentini M, et al. Ground based remote sensing techniques for the San Leo (northern Italy) rock cliff monitoring[J]. Rendiconti Online Societa Geologica Italiana, 2016, 41: 239-242. [百度学术]
Ciampalini A, Raspini F, Frodella W. Back monitoring of the San Leo (northern Italy) rock cliff by means of SqueeSAR technique[J]. Rendiconti Online Societa Geologica Italiana, 2016, 41: 227-230. [百度学术]
Gischig V, Amann F, Moore J R, et al. Composite rock slope kinematics at the current Randa instability, Switzerland, based on remote sensing and numerical modeling[J]. Engineering Geology, 2011, 118(1/2):37-53. [百度学术]
Mazzanti P, Brunetti A, Bretschneider A. A new approach based on terrestrial remote-sensing techniques for rock fall hazard assessment[M]. Modern Technologies for Landslide Monitoring and Prediction. Berlin, Heidelberg:Springer, 2015: 69-87. [百度学术]
Gigli G, Morelli S, Fornera S, et al. Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios[J]. Landslides, 2014, 11(1):1-14. [百度学术]
Nikolakopoulos K, Depountis N, Vagenas N, et al. Rockfall risk evaluation using geotechnical survey, remote sensing data, and GIS: A case study from western Greece[C]∥ Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015). Bellingham, Wa: Spie-Int Soc Optical Engineering, 2015. [百度学术]
胡涛,樊鑫,王硕,等.基于径向基神经网络的思南县崩塌易发性评价[J].科学技术与工程,2019,19(35):61-69. [百度学术]
Hu T, Fan X, Wang Sh, et al. Collapse susceptibility assessment of sinan county based on radial basis function neural network[J]. Science Technology and Engineering, 2019,19(35):61-69. (in Chinese) [百度学术]
Alippi C, Camplani R, Galperti C, et al. Effective design of WSNs: From the lab to the real world[C]∥ 2008 3rd International Conference on Sensing Technology. New York: IEEE, 2008: 1-9. [百度学术]
Alippi C, Camplani R, Galperti C, et al. An hybrid wireless-wired monitoring system for real-time rock collapse forecasting[C]∥ The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS 2010). New York: IEEE, 2010: 224-231. [百度学术]
Kato S, Kohashi H. Study on the monitoring system of slope failure using optical fiber sensors[C]∥ Geocongress 2006: Geotechnical Engineering in the Information Technology Age. Reston, VA: ASCE, 2006: 1-6. [百度学术]
Losasso L, Sdao F. The artificial neural network for the rockfall susceptibility assessment:A case study in Basilicata (Southern Italy)[J]. Geomatics, Natural Hazards and Risk, 2018, 9(1): 737-759. [百度学术]
Liao X H, Wang X L, Li L H, et al. Engineering application and prediction of the influence area of the rockfall hazards[J]. Mathematical Problems in Engineering, 2020, 2020:1-14. [百度学术]
林报嘉,刘晓东,杨川,等.XGBoost机器学习模型与GIS技术结合的公路崩塌灾害易发性研究[J].公路,2020,65(7):20-26. [百度学术]
Lin B J, Liu X D, Yang Ch, et al. Avalanche susceptibility assessment of highway based on xgboost machine learning model and GIS method[J].Highway, 2020,65(7):20-26. (in Chinese) [百度学术]
Chen L L, Zhang W G, Gao X C, et al. Design charts for reliability assessment of rock bedding slopes stability against bi-planar sliding: SRLEM and BPNN approaches[J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2020,1: 1-16. [百度学术]
Fanos A M, Pradhan B, Mansor S, et al. A hybrid model using machine learning methods and GIS for potential rockfall source identification from airborne laser scanning data[J]. Landslides, 2018, 15(9): 1833-1850. [百度学术]
Fanos A M, Pradhan B, Alamri A, et al. Machine learning-based and 3D kinematic models for rockfall hazard assessment using LiDAR data and GIS[J]. Remote Sensing, 2020, 12(11):1755. [百度学术]
Shi G, Li D. Automatic measurement and alarm prediction system of land subsidence[J]. Computer Automated Measurement & Control, 2003, 11(4):244-246. [百度学术]
An Z H, Wang H, Wu F, et al. The research of remote sensing in karst collapse remote sense based on airborne LiDAR system: Taking Meitanba mining area in Hunan Province as an example[J]. The International Society for Optical Engineering, 2014, 9299:92990Z-92990Z-6. [百度学术]
Yu T, Twumasi J O, Le V, et al. Surface and subsurface remote sensing of concrete structures using synthetic aperture radar imaging[J]. Journal of Structural Engineering, 2017, 143(10):04017143. [百度学术]
Tomás R, Romero R, Mulas J, et al. Radar interferometry techniques for the study of ground subsidence phenomena: a review of practical issues through cases in Spain[J]. Environmental Earth Sciences, 2014, 71(1): 163-181. [百度学术]
Zhu B, Xia K. Design of Subsidence monitoring system based on wireless sensor networks[C]∥International Conference on Wireless Communications Networking & Mobile Computing. New York: IEEE, 2010:1-4. [百度学术]
Marturià J, Lopez F, Gigli G, et al. Integrating wireless sensor network for monitoring subsidence phenomena[C]∥ EGU General Assembly Conference Abstracts.[S.l]:[s.n.], 2016. [百度学术]
Li C, Azzam R, Fernández-Steeger T M. Kalman filters in geotechnical monitoring of ground subsidence using data from MEMS sensors[J]. Sensors, 2016, 16(7): 1109. [百度学术]
Zambrano A, Perez I, Palau C, et al. Quake detection system using smartphone-based wireless sensor network for early warning[C]∥ 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (Percom Workshops). New York: IEEE, 2014: 297-302. [百度学术]
Schwegmann C P, Kleynhans W, Engelbrecht J, et al. Subsidence feature discrimination using deep convolutional neural networks in synthetic aperture radar imagery[C]∥2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). New York: IEEE, 2017: 4626-4629. [百度学术]
Li Z G, Xiao S D, Pan Y H, et al. The hazard assessment of karst surface collapse risk zoning based on BP neural network in Wuhan City[J]. Applied Mechanics & Materials, 2013, 405-408:2376-2379. [百度学术]
Liu L, Wang C, Zhang H, et al. Automatic monitoring method for surface deformation of coastal area based on time series analysis[J]. Journal of Coastal Research, 2019, 93(Sup 1): 194-199. [百度学术]
Li T, Xing X, Shi Z. Neural network model based on genetic algorithm for predicating mining subsidence in multi-fault areas[C]∥2010 International Conference on Mine Hazards Prevention and Control. Paris, France: Advances in Intelligent Systems Research, 2010:474. [百度学术]
Han D, Li X J. The surface subsidence prediction of shield construction based on the fuzzy neural network[C]∥GeoShanghai International Conference. Singapore:Springer, 2018: 190-197. [百度学术]
Lv W, Wang M, Zhu X G. Model for prediction of surface subsidence coefficient in backfilled coal mining areas based on genetic algorithm and BP neural network[J]. Journal of Computational Methods in Sciences and Engineering, 2016, 16(4): 745-753. [百度学术]
Yang W F, Xia X H. Prediction of mining subsidence under thin bedrocks and thick unconsolidated layers based on field measurement and artificial neural networks[J]. Computers & Geosciences, 2013, 52: 199-203. [百度学术]
Wu M H, Xia X G. Study on the calculation of surface subsidence coefficient based on principal component analysis and neural networks[C]∥ 2nd Annual International Conference on Energy, Environmental & Sustainable Ecosystem Development (EESED 2016). Paris, France: Atlantis Press, 2016. [百度学术]
Zhou Q H, Hu Q W, Ai M Y, et al. An improved GM (1, 3) model combining terrain factors and neural network error correction for urban land subsidence prediction[J]. Geomatics, Natural Hazards and Risk, 2020, 11(1): 212-229. [百度学术]
Zhang W G, Zhang R H, Wu C Z, et al. State-of-the-art review of soft computing applications in underground excavations[J]. Geoscience Frontiers, 2020, 11(4): 1095-1106. [百度学术]
Zhang W G, Li H R, Wu C Z, et al. Soft computing approach for prediction of surface settlement induced by earth pressure balance shield tunneling[J]. Underground Space, 2021,6(4):353-363. [百度学术]
Goh A T C, Zhang W G, Zhang Y M, et al. Determination of earth pressure balance tunnel-related maximum surface settlement: A multivariate adaptive regression splines approach[J]. Bulletin of Engineering Geology and the Environment, 2018, 77(2): 489-500. [百度学术]
Zhang W G, Goh A T C. Multivariate adaptive regression splines for analysis of geotechnical engineering systems[J]. Computers and Geotechnics, 2013, 48: 82-95. [百度学术]